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Deformation of complex Finsler metrics

Annamária SZÁSZ-FRIEDL

Abstract

The aim of this paper is to describe the infinitesimal deformation
(M,V ) of a complex Finsler space family {(M,Lt)}t∈R and to study
some of its geometrical objects (metric tensor, non-linear connection,
etc). In this circumstances the induced non-linear connection on (M,V )
is defined. Moreover we have elaborate the inverse problem, the problem
of the first order deformation of the metric. A special part is devoted
to the study of particular cases of the perturbed metric.

1 Introduction

The problem of complex structure deformations on a differentiable manifold
is one of interest, and in this direction, remarkable results have been obtained
[7, 8]. Starting with a complex (integrable) manifold (M,J), a deformation
of a certain integrable almost complex structure is studied by a power series
expansion in a real parameter t of the linear operator J, so that the obtained
manifold (M,Jt) must be an integrable complex one. The problem is difficult
and involves algebraic geometry considerations. Generally, through a defor-
mation of a complex manifold, the entire geometry (the complexificate tangent
space, Hermitian metrics, linear connections, etc.) is modified considerably.

The present work is intended to approach a simpler problem. We will not
deform the manifold M, so the holomorphic tangent bundle T ′M remains the
same. Instead, we change the metrics which acts on T ′M, metrics which origi-
nates from a complex Finsler metric (M,L). In this way we obtain a family of

Key Words: complex Finsler space, infinitesimal deformation of a metric, induced non-
linear connection, deformation of a metric.

2010 Mathematics Subject Classification: 53B40, 53C60.
Received: 2.10.2017
Accepted: 31.10.2017

229



DEFOMATIONS OF COMPLEX FINSLER METRICS 230

complex Finsler spaces (M,Lt). This problem is called the deformation of the
complex Finsler structures. To the best of our knolidge, the deformation of
the complex Finsler structures was studied only by T. Aikou in [2], where the
infinitesimal deformation of the Einstein-Finsler structures on a holomorphic
bundle E is approached. Obviously, in the case when E = T ′M, a special
non-linear connection exits, called Chern-Finsler, which will bring new contri-
butions to the study.

This paper deals with three main sections. The fist reviews only the most
necessary notions for the main part. The second one begins by considering a
family of spaces (M,Lt) given by the complex Finsler metric F, and defines
the infinitesimal deformation (M,V ) of the (M,L = F 2) space. Here we are
dealing with some geometry elements (metric tensor, non-linear connection,
etc.) of the complex Finsler space (M,V ), (Theorem 2.2). This point of view
sheds some new light on the rigidity of an infinitesimal deformation of a Finsler
space (Proposition 2.1). In contrast to previous section, the last part considers
(M,L) a complex Finsler space, and defines the first variation of it as the one
parameter family {L̃t = L + tV }t, where V is a real valued function. Under
this assumption, the question is when (M, L̃t determines a family of complex
Finsler spaces (Theorem 3.1). This problem has been called by us the first
order deformation. What is important to be mentioned here is the relation
between the induced connection of the deformation and the Chern-Finsler one
(Theorem 3.2, Proposition 3.2). The advantage of using this connections lies
in the fact that the characterization of the special subclasses is simplified. We
will emphasize in our study only the pure Hermitian, the Kähler, the Berwald
and the generalized Berwald spaces (Propositions 3.3, 3.4, 3.5, 3.6). This
research includes also the characterization of the projective relation between
the complex Finsler metrics L and L̃t (Proposition 3.7).

Let M be a complex manifold of complex dimension n, where (U, (zk)) is
a local chart with complex coordinates (zk), and T ′M is holomorphic tangent
bundle where the fiber has the (ηk) components. From now on we take into
consideration (M,L = F 2) as a complex Finsler space, where F : T ′M → R+

is called the complex Finsler function if it satisfies the below conditions:

i) L := F 2 is smooth on T̃ ′M := T ′M \ {0};

ii) F (z, η) ≥ 0, equality holds if and only if η = 0;

iii) F (z, λη) = |λ|F (z, η) for λ ∈ C;

iv) the following Hermitian matrix gjk̄(z, η), with

gjk̄ =
∂2L

∂ηj∂η̄k
(1)
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is positive definite on T̃ ′M, and it is called the fundamental metric tensor
of the space.

On (M,F ) we consider the Chern-Finsler complex non-linear connection,
(briefly (c.n.c.)) with the local coefficients N j

k = gm̄j glm̄
∂zk

ηl. Consequently,
the horizontal distribution HT ′M associated to Chern-Finsler (c.n.c.) will
be generated by δk := δ

δzk
= ∂

∂zk
− Nm

k
∂

∂ηm . Therefor, we obtain the local

coefficients of the Chern-Finsler linear connection DΓ = (N i
j , L

i
jk, C

i
jk, 0, 0):

Ljkl = gm̄jδlgkm̄, Cjkl = gm̄j ∂̇lgkm̄. (2)

The connection form and the curvature form is considered as follows:

ωjk = Ljkldz
l + Cjklδη

l, Ωjk = d′′ωjk. (3)

Hence the Chern-Finsler (c.l.c.) is of type (1, 0) for any Z ∈ A0(T ′M) we have
the decomposition D = D′ +D′′, with

D′Z = (d′Zi + Zmωim)⊗ si, D′′Z = d′′Z, (4)

where d′Z = δmZ
mdzm + ∂̇mZ

mδηm and d′′Z = δm̄Z
m̄dz̄m + ∂̇m̄Z

m̄δη̄m.
In [1, 6] the notions of weakly Kähler space were introduced and studied,

i.e. gil̄T
i
jkη

j η̄l = 0, and of Kähler space, i.e. T ijkη
j = 0, where T ijk = Lijk−Likj .

If we work under the assumption that gi̄ = gi̄(z), then the space is called
purely Hermitian, and the notions of weakly Kähler and Kähler coincides.

The Chern-Finsler (c.n.c.) in general doesn’t derive from a complex spray,
but always determines one with the local coefficientsGi = 1

2N
i
jη
j .On the other

hand, from Gi is obtained a (c.n.c.) through
c

N i
j = 2∂̇jG

i, called canonical in
[9]. This connection coincide with the Chern-Finsler one if and only if the
metric is Kähler.

The Finsler space (M,L) is generalized Berwald if the coefficients Gi are
holomorphic functions, i.e. ∂̇j̄G

i = 0, ([3, 5]). A generalized Berwald space
(M,L) which is also Kähler is called a complex Berwald space ([3]). The weakly
Kähler form is given by θ∗k := gm̄kghl̄T

l̄
j̄m̄
ηhη̄j . A space with vanishing θ∗k

becomes weakly Kähler.
Let L̃ be an other complex Finsler metric on M. Abate and Patrizio in-

troduced in [1] the projective relation of two complex Finsler metrics, which
means that the metrics L and L̃ on the manifold M have the same geodesics
as set of points.

In [4] one can find necessary and sufficient conditions for projectively re-
lated complex Finsler metrics:
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Theorem 1.1 ([4]). Let L and L̃ be complex Finsler metrics on the manifold
M. Then L and L̃ are projectively related if and only if there is a smooth
function P in T ′M with complex values, such as

G̃i = Gi +Qi + Pηi, i = 1, . . . , n,

where Qi := 1
2 (θ̃∗i − θ∗i).

The following result is a complex version of Rapcsák’s theorem.

Theorem 1.2 ([4]). Let L and L̃ be complex Finsler metrics on the manifold
M. Then L and L̃ are projectively related if and only if

∂̇r̄(δkL̃)ηk + 2(∂̇r̄G
l)(∂̇lL̃) =

1

L̃
(δkL̃)ηk(∂̇r̄L̃); (5)

Qr = − 1

2L̃
θ∗l(∂̇lL̃)ηr;

P =
1

2L̃
[(δkL̃)ηk + θ∗i(∂̇iL̃)],

(r = 1, . . . , n), and the projective change is G̃i = Gi + 1
2L̃

(δkL̃)ηkηi.

2 Infinitesimal deformations of Finsler structures

Let (M,L) be a complex Finsler space, with the fundamental tensor gjk̄(z, η).
We consider a 1−parameter family of complex Finsler spaces {(M,Lt)}t∈R,
where for each t ∈ R the functions Lt(z, η) verifies the conditions i)-iv) on the
T ′M holomorphic tangent bundle, and the metric tensors are
gi̄(t) := gi̄(z, η, t) similar to (1). Suppose that for t = 0 we have L0 = L. For
this family of complex Finsler spaces we can consider a tangent vector:

V :=

(
∂Lt
∂t

)
t=0

(1)

called the infinitesimal deformation induced by the Lt family. Its components
in respect with an orthonormal frame {δk, ∂̇k, δk̄, ∂̇k̄} are given by:

vjk̄ :=

(
∂gjk̄(t)

∂t

)
t=0

(2)

Since Lt are complex Finsler functions, we can deduce immediately that

the V function is also smooth on T̃ ′M, positive definite and homogeneous.
However, this doesn’t mean that the space (M,V ) is also a complex Finsler
one. For this purpose the function V needs to verify the following conditions:
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Theorem 2.1. Let (M,L) be a complex Finsler space with its infinitesimal
deformation V defined in (1). If the V function satisfies the below properties:

i) V (z, η) ≥ 0, the equality holds if and only if η = 0;

ii) the matrix vjk̄ :=
(
∂gjk̄(t)

∂t

)
t=0

is positive definite,

then the (M,V ) will be a complex Finsler space, with the metric tensor vjk̄.

Remark 2.1. The inverse of vjk̄ is vk̄m := ∂gk̄m(t)
∂t |t=0.

We suppose that (M,V ) is hereinafter a complex Finsler space. Between
the metric tensors of (M,L) and (M,V ) we have:

Lemma 2.1. Between the tensors gjk̄ from (1) and vjk̄ from (2) we have:

vjk̄g
k̄i + gjk̄v

k̄i = 0. (3)

Proof. Our proof start with the observation that in (M,L) and in (M,Lt) it
takes place:

gjk̄g
k̄m = δmj ⇒ gjk̄(t)gk̄m(t) = δmj .

After the differentiation in respect with respect to t at t = 0, and we obtain:

gk̄m
∂gjk̄(t)

∂t
|t=0 + gjk̄

∂gk̄m(t)

∂t
|t=0 = 0 ⇔ vjk̄g

k̄m + gjk̄v
k̄m = 0.

We are interested in finding new non-linear connections in (M,V ), and to
establishing relations between them.

Theorem 2.2. Let (M,L) be a complex Finsler space with his infinitesimal

deformation (M,V ). The functions
V

Nk
j :=

∂Nk
j (t)

∂t |t=0 are local coefficient of a
(c.n.c.) in (M,V ), called the induced non-linear connection of the deformation.

Proof. According to [9] p.35, the functions
V

Nk
j are coefficients of a (c.n.c.), if

the associated adapted frame
V

δj := ∂j −
∂Nk

j (t)

∂t |t=0∂̇k simply changes with the

matrix
(
∂z′k

∂zm

)
on T ′M,

(
zk, ηk

)
→
(
z′k, η′k

)
.

As N j
k(t) is the Chern-Finsler (c.n.c.) in (M,Lt), we have that his adapted

frame δj := ∂j −Nk
j (t)∂̇k changes with the matrix

(
∂z′k

∂zm

)
. After a differentia-

tion in respect to t, the same rule is preserved by the elements of the adapted

frame, i.e.
V

δj = ∂z′k

∂zj

V

δ′k.
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On the other side, on (M,V ) we can consider the Chern-Finsler (c.n.c) :
CFV

Nk
j = vl̄k

∂vpl̄
∂zj η

p. We wish to investigate the link between this two (c.n.c) on

(M,V ). For this aim, we recall that N j
k(t) = gm̄j(t)∂glm̄(t)

∂zk
ηl and N j

k = N j
k(0),

and we explicit:

∂vpl̄
∂zj

ηp =
∂

∂t

(
∂gpl̄(t)

∂zj
ηp
)
t=0

=
∂

∂t

(
gil̄(t)N

i
j(t)
)
t=0

= (4)

=
∂gil̄(t)

∂t
|t=0N

i
j + gil̄

∂N i
j(t)

∂t
|t=0 = vil̄N

i
j + gil̄

∂N i
j(t)

∂t
|t=0.

Applying this expression, we deduce a relation between the induced (c.n.c.)
on (M,V ) and the Chern-Finsler one on (M,L):

V

Nm
j = −gl̄mvil̄N i

j + gl̄m
∂vpl̄
∂zj

ηp. (5)

The last formula can be processed in
V

Nm
j = vl̄mgil̄g

p̄i ∂gsp̄
∂zj η

s + gl̄m
∂vpl̄
∂zj η

p,
by using (3) can be written as:

V

Nm
j = vp̄m

∂gsp̄
∂zj

ηs + gl̄m
∂vpl̄
∂zj

ηp.

From (3) we obtaine gl̄m = −vl̄jgjk̄vk̄m. Replacing this in (5) we proved:

Theorem 2.3. Let N be the Chern-Finsler (c.n.c) in (M,L), let
V

N be the

induced connection and let
V CF

N be the Chern-Finsler one on the infinitesi-
mal deformation (M,V ) of (M,L). Between this local coefficients occurs the
following relation:

V

Nm
j = gil̄v

l̄m(N i
j −

CFV

N i
j ). (6)

In the next part we will look more closely at the linear connection of the in-
finitesimal deformation (M,V ). Let Dt the Chern-Finsler linear connection of
the 1-parameter family {(M,Lt)}t∈R of the complex Finsler structure (M,L) .
We denote with D0 := D, where D is the Chern-Finsler connection of the
(M,L) space, and with Dt the Chern-Finsler connection of (M,Lt). Since the
Chern-Finsler connection Dt is metric in respect to gjk̄(t), i.e.

Dtgjk̄(t) = 0
(4),(2),(3)⇔ d′tgjk̄(t)− ωmj (t)gmk̄(t) = 0,
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then the connection form ω(t) of Dt will be determined by

gik̄(t)ωij(t) = d′tgjk̄(t). (7)

Now we consider a linear connection of (1,0)-type on the complex Finsler
space (M,V ), with the connection form

V

ωij =

(
∂ωij(t)

∂t

)
t=0

.

From the fact that ωij(t) is a connection form on (M,Lt), immediately re-

sults that
V

ωij is also a connection form on (M,V ) , which will be called the
connection form of the infinitesimal deformation of the Chern-Finsler connec-
tion.

To give the explicit form for the infinitesimal deformation of the Chern-
Finsler connection ω(t) = D′t+D′′t we differentiate (7) in respect to t at t = 0:

gik̄

(
∂ωij(t)

∂t

)
t=0

=
∂

∂t

(
d′tgjk̄(t)

)
t=0
− vik̄ωij . (8)

Let {δtk := ∂k − N j
k(t)∂̇j , ∂̇k} be the adapted base of the Chern-Finsler

(c.n.c.) on T ′M for the family of functions Lt, and the dual basis {dzk, δtηk :=
dηk+Nk

j (t)dzj}.We continue to develop independently the term ∂
∂t

(
d′tgjk̄(t)

)
t=0

from (8):

∂

∂t

(
d′tgjk̄(t)

)
t=0

=
∂

∂t
(δtmgjk̄(t)dzm + ∂̇mgjk̄(t)δtηm)t=0

=
∂

∂t
(∂mgjk̄(t)dzm −Np

m(t)∂̇pgjk̄(t)dzm

+∂̇mgjk̄(t)dηm + ∂̇mgjk̄(t)Nm
p (t)dzp)t=0

=
∂

∂t
(∂mgjk̄(t)dzm + ∂̇mgjk̄(t)dηm)t=0

= ∂mvjk̄dzm + ∂̇mvjk̄dηm

= ∂mvjk̄dzm + ∂̇mvjk̄dηm −Np
m∂̇pvjk̄dzm +Nm

p ∂̇mvjk̄dzp

= δmvjk̄dzm + ∂̇mvjk̄δη
m = d′vjk̄.

So (8) becomes

gik̄

(
∂ωij(t)

∂t

)
t=0

= d′vjk̄ − vik̄ωij = D′vjk̄. (9)
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Contracted with gk̄m, and using D′gjk̄ = 0 and vjk := gm̄jvkm̄, from (9) is
obtained (

∂ωmj (t)

∂t

)
t=0

= D′vmj .

We can now formulate an important result about the linear connection(
∂Dt

∂t

)
t=0

in (M,V ).

Proposition 2.1. Let Lt be the 1-parameter family of the complex Finsler
metrics on T ′M with the infinitesimal deformation V. The infinitesimal de-
formation

(
∂Dt

∂t

)
t=0

of the Chern-Finsler connection D is zero if and only if
D′V = 0.

Now we are able to write the non-zero coefficients of the infinitesimal de-
formation of the connection Dt:

V

Lmjk :=

(
∂Lijk(t)

∂t

)
t=0

= vm̄iδkgjm̄ + gm̄iδkvjm̄ − gm̄i∂̇pgjm̄
V

Np
k

V

Cmjk :=

(
∂Cijk(t)

∂t

)
t=0

= vm̄i∂̇kgjm̄ + gm̄i∂̇vjm̄,

where
(
Lmjk, C

m
jk

)
are given in (2).

Using the definition of the curvature and the curvature form given in (3),
we obtain the expression of the infinitesimal deformation of the curvature
associated with the Chern-Finsler connection:(

∂Ωij(t)

∂t

)
t=0

= D′′
(
D′v′ij

)
.

Obviously on the (M,V ) space we can also consider the Chern-Finsler

connection associated to the metric vjk̄, i.e.
CFV

Lmjk = vm̄j
CFV

δl vkm̄,
CFV

Cjkl =

vm̄j ∂̇lvkm̄. The link between this connection with the connection of the in-
finitesimal deformation can be achieved by a trivial calculus, without interest.

3 First order deformation of a complex Finsler metric

Until now we have considered the complex Finsler space (M,L) and the family
of complex Finsler spaces (M,Lt) which have defined the infinitesimal defor-
mation V, for which we have presumed that satisfies the axioms of a complex
Finsler function.
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In the following, we treat the problem inversely. We consider the complex
Finsler space (M,L) and V : T ′M → R+ a given function.

We define the family of functions L̃t : T ′M → R+, ∀t ∈ R, called the first
order deformation of L :

L̃t := L+ tV, ∀t ∈ R.

Obviously, from (1), follows that V is an infinitesimal deformation (of first
order) of L̃t.

We search for the conditions under which (M, L̃t) are complex Finsler
spaces. To achieve this, we must verify the four conditions from the definition
of a complex Finsler function for L̃t.

The ii) condition is equivalent with

L̃t ≥ 0 ⇔ L+ tV ≥ 0 ⇔ tV ≥ −L,∀t ∈ R.

We verify the equality firstly from the converse, namely it assumes that η = 0.
In this way we obtain

L̃t(z, 0) = L(z, 0) + tV (z, 0) = tV (z, 0) = t
∂Lt(z, 0)

∂t
|t=0. (10)

This relation is not vanishing for all t ∈ R, z ∈M. For example, if Lt(z, 0) =

zt, then ∂Lt(z,0)
∂t |t=0 = z. So, we must impose the condition V (z, 0) = 0,

∀ z ∈ T ′M. The function L̃t will be (1,1)-homogeneous if and only if V will
be homogeneous of the same type. And so, we have:

Theorem 3.1. The space (M, L̃t) with L̃t defined in (10) is a complex Finsler
space if and only if

i) the first order infinitesimal deformation V is a complex Finsler function,

ii) tV ≥ −L, ∀(z, η) ∈ T ′M, t ∈ R,

iii) t is sufficiently small, so that he metric L̃t remains positive definite,

iv) the fundamental tensor g̃jk̄(z, η, t) is positive definite, where

g̃jk̄(t) =
∂2L̃t
∂ηj∂η̄k

= gjk̄(z, η) + tvjk̄(z, η). (11)

We assume that (M, L̃t) is hereinafter a complex Finsler space.
To study the geometrical objects of (M, L̃t) we need the inverse matrix of

(g̃jk̄).
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Proposition 3.1. Let (M, L̃t) a complex Finsler space. The inverse of the
fundamental metric tensor g̃jk̄(t) from (11) is g̃k̄m(z, η, t) with

g̃k̄m(t) =
1

1 + t2
gk̄m(z, η) +

t

1 + t2
vk̄m(z, η). (12)

Proof. The proof is made trough direct calculus, with the help of Lemma
2.1.

In the study of the family of spaces {(M, L̃t)}t∈R an investigation of the
non-linear connections is indispensable. On (M, L̃t) the Chern-Finsler (c.n.c.)
has the following form

Ñ i
j(t) = g̃m̄i(t)

∂g̃pm̄(t)

∂zj
ηp

= g̃m̄i(t)

(
gp̄mN

p
j + tvp̄m

CFV

Np
j

)
=

(
1

1 + t2
gm̄i +

t

1 + t2
vm̄i
)

∂

∂zj
(gpm̄ + tvpm̄)ηp

=
1

1 + t2
N i
j +

t

1 + t2

(
gm̄i

∂vpm̄
∂zj

ηp + vm̄i
∂gpm̄
∂zj

ηp
)

+
t2

1 + t2
vm̄i

∂vpm̄
∂zj

ηp

=
1

1 + t2
N i
j +

t

1 + t2
∂N i

j(t)

∂t
|t=0 +

t2

1 + t2
vm̄i

∂vpm̄
∂zj

ηp (13)

=
1

1 + t2
N i
j +

t

1 + t2

V

N i
j +

t2

1 + t2

CFV

N i
j .

Theorem 3.2. Let (M, L̃t) be a complex Finsler space. The complex non-
linear connection Chern-Finsler Ñ i

j(z, η, t) on (M, L̃t) is

Ñ i
j(t) = N i

j +
t

1 + t2
∂Np

j (t)

∂t
|t=0

(
δip − tvip

)
, ∀ t ∈ R, (14)

where N i
j are the local coefficients of the Chern-Finsler (c.n.c.) on (M,L), and

vip := vpm̄g
m̄i.

Proof. The demonstration is made with direct computations using the for-
mula (13). After a differentiation with respect to t at t = 0 of N i

j(t) =

gm̄i(t)∂jgpm̄(t)ηp and after a contraction with gil̄ is obtained:

∂(∂jgpl̄)

∂t
|t=0η

p = gil̄
∂N i

j(t)

∂t
|t=0 − gil̄vm̄i∂jgpm̄ηp.
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But ∂jgpm̄η
p = grm̄N

r
j and

∂(∂jgpl̄)

∂t |t=0 = ∂jvpl̄, and using (3) is deduced

∂jvpl̄η
p = gil̄

∂N i
j(t)

∂t
|t=0 + vil̄N

i
j . (15)

Replacing this expression in (13), and keeping in mind (3), after an ele-
mentary calculation (14) is found.

Now we are able to construct the adapted frame in respect to the Chern-
Finsler (c.n.c.) from (M, L̃t).

Lemma 3.1. The adapted frame of the Chern-Finsler (c.n.c) Ñ(t) is
{δ̃m(t), ∂̇m, δ̃m̄(t), ∂̇m̄}, with:

δ̃m(t) = δm −
t

1 + t2
(
V

δm − ∂m) +
t2

1 + t2
∂Nk

m(t)

∂t
|t=0v

p
k∂̇p,

and δ̃m̄(t) = δ̃m(t), where δm is the adapted horizontal frame associated to N i
j

from (M,L), and
V

δm is its infinitesimal deformation.

With all of the necessary objects, we can build the Chern-Finsler (c.l.c.)
D̃t = (Ñ i

j(t), L̃
i
jk(t), C̃ijk(t), 0, 0).

Proposition 3.2. In the complex Finsler space (M, L̃t), with the L̃t metric
from (10), the non-zero local coefficients of the Chern-Finsler (c.l.c.) D̃t are:

L̃ijk(t) =
1 + 2t2

1 + t2
Lijk +

t

1 + t2
vimL

m
jk −

t2

1 + t2
∂̇kv

i
p

∂Np
j (t)

∂t
|t=0,

C̃ijk(t) =
1

1 + t2
Cijk +

t

1 + t2
vimC

m
jk.

The torsion of the Chern-Finsler N − (c.l.c.) D̃t has the following non-
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vanishing local coefficients:

T̃ ijk(t) = L̃ijk(t)− L̃ikj(t) =
1 + 2t2

1 + t2
T ijk +

t

1 + t2
vimT

m
jk −

− t2

1 + t2

(
∂̇kv

i
p

∂Np
j (t)

∂t
|t=0 − ∂̇jvip

∂Np
k (t)

∂t
|t=0

)
, (16)

Q̃ijk(t) = C̃ijk(t) =
1

1 + t2
Cijk +

t

1 + t2
vimC

m
jk,

ρ̃ijk̄(t) = ∂̇k̄Ñ
i
j(t) = ρijk̄ +

t

1 + t2

∂ρi
jk̄

(t)

∂t
|t=0 −

− t2

1 + t2

(
∂̇k̄v

i
p

∂Np
j (t)

∂t
|t=0 + vip

∂ρp
jk̄

(t)

∂t
|t=0

)
,

Θ̃i
jk̄(t) = δtk̄Ñ

i
j(t) = Θi

jk̄ +
t

1 + t2

[
δk̄

(
∂Np

j (t)

∂t
|t=0

)
(δip − tvip)−

−
∂Np

j (t)

∂t
|t=0tδk̄v

i
p +

∂N l̄
k̄
(t)

∂t
|t=0(δr̄l̄ − tv

r̄
l̄ )ρ̃

i
jr̄(t)

]
.

Theorem 3.3. Let (M,L) be a complex Finsler space with the infinitesimal
deformation V which satisfies the condition D′V = 0, where D is the Chern-
Finsler (c.l.c.) in (M,L). Then the D̃t = (Ñ i

j(t), L̃
i
jk(t), C̃ijk(t), 0, 0) connection

of the (M, L̃t) space is independent on t.

Proof. Let us first examine D′V = 0 on (M,L).

D′v = 0 ⇒ d′vij̄ − ωmi vmj̄ = 0.

Contracting this relation with vj̄q we obtain wj̄qd′wij̄ = gj̄qd′gij̄ . Combining
the formula of d′ with the expressions of the adapted horizontal frame δk and
of the vertical co-frame δηk in this relation, we can affirm:

CFV

Nq
k = vj̄q

∂vij̄
∂zk

ηi = gj̄q
∂gij̄
∂zk

ηi = Nq
k . (17)

This gives d′ =
CFV

d′ . By the same condition D′V = 0, we have

ωjk = gm̄jd′gkm̄ = vm̄j
CFV

d′ vkm̄ =
CFV

ωjk .

We check at ones that D =
CFV

D .
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Remark 3.1. Using previous Theorem, we can assert that any complex Finsler
structure (M,L) with infinitesimal deformation V which satisfies D′V = 0 is
a rigid one.

In the following, we will be concerned with the study of particular classes
of the first order deformation L̃t = L+ tV .

The notion of the purely Hermitian space ([1, 9]) is presented in the intro-
ductory part, and is related to the complex Finsler spaces whose metric gi̄
is independent on η. Supposing that L̃t is defining a complex Finsler metric
(Th. 2.1) and its infinitesimal deformation V depends only of the position z.
In this way we obtain from (11) immediately:

Proposition 3.3. The complex Finsler space (M, L̃t) is purely Hermitian if
and only if (M,L) is purely Hermitian.

From the expression of the h−torsion T̃ ijk(t) in (16) the following property
is deduced:

Proposition 3.4. Let (M,L) be a complex Kähler space. (M, L̃t) is a complex
Kähler space if and only if

∂̇kv
i
p

∂Np
j (t)

∂t
|t=0 − ∂̇jvip

∂Np
k (t)

∂t
|t=0 = 0.

From [5] we know that if ∂̇h̄G
i = 0 than the space is generalized Berwald,

and if in addition the space is Kähler, than it becomes a complex Berwald
one.

The complex spray derived from the (c.n.c.) Ñ i
j(t) is

G̃i(t) = Gi +
t

1 + t2
∂Gi(t)

∂t
|t=0

(
δip − tvip

)
. (18)

In the following, we give necessary and sufficient conditions so that the
complex Finsler space (M, L̃t) became a generalized Berwald one, or a complex
Berwald one.

Proposition 3.5. Let (M,L) be a generalized Berwald space. . Under one of
the condition sets stated below (M, L̃t) is a generalized Berwald space:

i) the tensors vij and gm̄i∂0v0m̄ are holomorphic;

ii) (M,V ) is generalized Berwald space.
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Proof. Let (M,L) is a generalized Berwald space. From the expression of the
complex spray G̃i, given in (18), is deduced that the spray is holomorphic if

and only if ∂
∂η̄h

(
∂Gi(t)
∂t |t=0

)
= 0, where ∂Gi(t)

∂t |t=0 =
∂Ni

j (t)ηj

∂t |t=0 =
V

N i
j η

j with

V

N i
j given in (6):

∂

∂η̄h

(
∂Gi(t)

∂t
|t=0

)
= ( ∂̇h̄v

m̄i ∂jgpm + vm̄i ∂̇h̄∂jgpm̄

+∂̇h̄g
m̄i ∂jvpm̄ + gm̄i ∂̇h̄∂jvp̄m ) ηpηj . (19)

To prove i) we have to go through the following steps. We explicit the equality
∂̇h̄G

i = 0 in the following way:

∂̇h̄
(
gm̄i∂jgpm̄η

iηp
)

= 0⇔
(
∂̇h̄g

m̄i∂jgpm̄ + gm̄i∂̇h̄∂jgpm̄

)
ηpηj = 0.

Contracting this relation with gik̄ we obtain

∂̇h̄∂jgpk̄η
pηj = −gik̄∂̇h̄gm̄i∂jgpm̄ηpηj . (20)

Assuming ∂̇h̄v
i
p = 0 leads us to

∂̇h̄v
m̄igpm̄ = −vm̄i∂̇h̄gpm̄ ⇔ ∂̇h̄v

k̄i = −vm̄igk̄p∂̇h̄gpm̄. (21)

Replacing (20) and (21) in (19), and using the property ∂̇h̄δ
i
j = 0, we get

∂

∂η̄h

(
∂Gi(t)

∂t
|t=0

)
=

(
∂̇h̄g

m̄i∂jvpm̄ + gm̄i∂̇h̄∂jvpm̄

)
ηpηj

= ∂̇h̄
(
gm̄i∂jvpm̄

)
ηpηj .

Therefore, if we impose that the tensors vip and gm̄i∂0v0m̄ to be holomorphic,

then (M, L̃t) becomes a generalized Berwald space.
The ii) affirmation is obtained immediately from the expression of G̃i from

(18) applying the definition of a generalized Berwald space:

∂

∂η̄h

(
∂Gi(t)

∂t
|t=0

)
=

∂

∂η̄h

(
∂N i

j(t)η
j

∂t
|t=0

)
= ∂̇h̄

V

N i
j η

j = 0.

Proposition 3.6. Let (M,L) be a complex Berwald space. Under one of the
condition sets stated below (M, L̃t) is a complex Berwald space:
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i) the tensors vij , gm̄i∂0v0m̄ are holomorphic, and ∂̇0v
i
p
∂Np

k (t)

∂t |t=0 = 0.

ii) (M,V ) is a complex Berwald space.

Proof. (M, L̃t) is a complex Berwald space, according to [?], if and only if it
is a generalized Berwald space and a Kähler space, namely the Propositions
3.5 and 3.4 are verified.

Further, we analyze under what conditions the complex Finsler space
(M, L̃t) and (M,L) are projectively related, i.e. they have the same geodesics
as sets of points.

Proposition 3.7. The Finsler functions L are L̃t are projectively related if

and only if, the complex spray ∂Gi(t)
∂t |t=0 of (M,V ) is independent from t. In

this case, the projective change is G̃i = Gi.

Proof. From the Theorem 1.2 we deduce that, two complex Finsler functions
L and L̃t are in projective relation if an only if they verify the relation:

∂̇r̄(δkL̃t)η
k + 2(∂̇r̄G

l)(∂̇lL̃t) =
1

L̃t
(δkL̃t)η

k(∂̇r̄L̃t). (22)

By the lemma below, we can express the terms of (22).

Lemma 3.2 ([4]). Let (M,L) be a complex Finsler space and ∗L a complex
Finsler metric on M. The spray coefficients Gi and ∗Gi of the metrics L and
∗L satisfy:

∗Gi = Gi + ∗gr̄i
(
∂̇r̄(δ

∗
kL)ηk + 2(∂̇r̄G

l)(∂̇∗l L)
)

i = 1, . . . , n. (23)

From (18) and (23) we obtain

∂̇r̄(δkL̃t)η
k + 2(∂̇r̄G

l)(∂̇lL̃t) = tgpr̄
∂Gp(t)

∂t
|t=0. (24)

Contracting this relation with η̄r, and using the homogeneity property of L̃t,
we find:

(δkL̃t)η
k = 2t∂̇pL

∂Gp(t)

∂t
|t=0. (25)

Replacing the expressions (24) and (25) in (23) we get:

∂Gp(t)

∂t
|t=0

(
gpr̄L̃t − ∂̇pL ∂̇r̄L̃t

)
= 0.

In the above relation the expression in the brackets in generally is not zero,
but the infinitesimal deformation of the complex spray Gp is vanishing if the
spray is independent from t.

The converse implication is obtained immediately from the formula (18).
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